Low-Rise Multi-Residential
INTRODUCTION

Low-rise multi-residential buildings and townhouses provide important housing options for Kitchener residents. Well designed low-rise multi-residential buildings help add density to new and established neighbourhoods at a compatible, complementary scale. They help diversify communities, improve housing variety and increase affordability.

It is important that townhouses and low-rise multi-residential buildings integrate into their neighbourhoods and that the people who live there are made to feel like they belong. This includes having an active and direct relationship with the public realm, sidewalks, trails and open spaces. It means designing low-rise multi-residential buildings for urban life and a human experience; to be designed for pedestrians, cyclists and transit users.

Townhouses and Low-rise multi-residential buildings exist in many forms. These typologies are listed below. Low-rise multi-residential buildings are three storeys or fewer, except along arterial roads, where they may be up to four storeys in height.

What Is A Low-Rise Multi-Res Building?

Townhouses are important as they help create a transition between mid-and-high-rise buildings and lower density neighbourhoods. They can bring activity and continuity to the streetscape when designed as an integrated, unified part of their neighbourhood. Low-rise multi-residential buildings are also a valuable alternative to taller forms when seeking to achieve greater densities in established or new low-rise neighbourhoods.

Low-rise multi-residential buildings are to be designed with a rational and specific architectural intent. This means that whatever their visual style, buildings are to be massed, clad, articulated and detailed authentically, such that they reflect the needs, behaviours and tendencies of both occupants and community members. Architectural elements are to be integrated rather than decorative. They are to be complementary of neighbourhood character but not direct replications of existing features, particularly where a change in typology (such as taking a characteristic from a single detached house and applying it to an apartment building) would render those features out of scale, awkward or inappropriate.
All built-form elements visible from the public realm or shared spaces are to be designed to a high level of quality that is consistent with the architectural expression of the project as a whole.

Minimize the visual impact of parking through the thoughtful placement, orientation and articulation of built form as well as garage, parking structure and surface parking design.

Provide appropriate visual variety in massing, materials, colours and articulation both within the elements of an individual unit and between units. Avoid repetition that hinders wayfinding or creates a homogeneous built form, while also avoiding visual clutter.

For stacked townhouses, apartment buildings and hybrid buildings, a contemporary architectural style is generally preferred.

Design unit accesses to be clearly defined, consistent, easy to identify and without adding unnecessary visual clutter to a building’s elevations.

Site buildings to face and activate the public realm. Buildings should occupy a minimum of 75% of a site’s street frontage. Front doors should directly address the street and public realm.

Provide direct building access from a public sidewalk to maintain visibility and connectivity.

Limit townhouse block length and provide greater articulation for longer blocks.

Design all building elevations facing any streets, parks, trails and open spaces to appear and function as fronts, including features such as porches, front doors and large windows.

New buildings should be consistent with the existing neighbourhood setback pattern.

Site buildings such that units in opposing blocks are consistently facing front-to-front and/or back-to-back. Avoid back-to-front facing relationships.

Provide a minimum facing separation distance between buildings or blocks of units of 12m for 2-storey buildings and 15m for 3 or 4-storey buildings.

All available space between the street and the building is to be landscaped, including street trees and entry features.

Avoid any situation in which a back yard fronts onto a public street.

Where a functional ‘back yard’ is provided in an interior yard, a minimum 7.5m interior yard setback should be provided. Additionally, a landscaped setback between the property line and the back yard should be provided to allow for privacy screening.

Do not allow driveways to be a dominant front-yard feature. Place to the rear of buildings wherever possible. Otherwise, minimize their impact through site layout and landscape design.

Provide articulated vertical and horizontal massing elements which give a building or block of buildings visual and spatial depth and variety while maintaining a human-scaled experience.

For stacked townhouse blocks, apartment or hybrid buildings longer than 35m, provide stepbacks for upper storeys where appropriate, to add diversity and amenity to the urban fabric. Consider stepbacks for buildings of 3-4 storeys adjacent to 1-2 storey buildings.

For sites adjacent to commercial and/or employment uses, use additional transition measures such as increased setbacks, enhanced landscape screening and building organization and orientation that is designed intentionally to provide enhanced compatibility.

Consider the massing, height, length, depth, roof design, materials and rhythms of neighbouring buildings when designing for compatibility. Avoid direct replication of elements, particularly of historical building styles that cannot be replicated authentically with contemporary materials and construction practices.
Facade Design
- Roof elements should not visually dominate the building.
- Place high-activity living spaces (kitchens, living rooms, etc.) such that they have generous views onto the public realm and shared spaces.
- Strategically employ building materials, colours, and other architectural interventions to avoid excessive repetition and long, unarticulated building facades.
- Avoid blank walls that are visible from the street, on or off-site shared spaces or the public realm.
- All visible elements of a building, including utilities (meters, conduits), HVAC (a/c units, vents) and loading/servicing areas are to be integrated into the design of the building and shown on elevation drawings as part of the building elevation approval process.

Materials
- Use high-quality, resilient and sustainable materials and detail facades in an authentic manner which reflect contemporary construction methods and building technologies.
- Materials which are visually flat or monolithic in their finish are suitable for accent areas only.
- Materials and architectural details are only appropriate for achieving a ‘traditional’ or historical architectural style if they are demonstrated to be a significant, existing part of the historical neighbourhood character.

Porches, Balconies & Patios
- Where appropriate, provide balconies on upper levels and porches/patios at grade to promote natural surveillance and animate street frontages, shared spaces and the public realm.
- Design porches, balconies and patios with a scale and rhythm that suits the surrounding neighbourhood context but with materials and details that integrate seamlessly with the architectural expression of the building.

Entrances
- Ensure that front entrances to units are clearly visible from the street and directly accessible from the sidewalk via a generous and barrier-free walkway, enhanced with landscaping.
- Use an apartment or hybrid type dwelling when another design would not provide clearly visible individual unit entrances from the street.
- Ensure that entrances are clearly defined and emphasized through architectural elements that are clean, recognizable and appropriately scaled and detailed to suit the building mass.
- Incorporate windows, clerestory glass and sidelights into entrance designs to encourage natural surveillance and give permeability to the building facade. Avoid clustering opaque doors to units close together or without glazing between them providing natural surveillance.

At-Grade Elements
- Maintain the existing grade at the property lines and avoid using artificially raised or lowered grades.
- Limit the height of stairs to the first floor to 3 to 5 steps above grade.
- Avoid the use of retaining walls and minimize their height, particularly along street frontages, open spaces, parks, ravines and other areas of the public realm.
SITE DESIGN

INCLUSIVE DESIGN

Safety

A Crime Prevention Through Environmental Design (CPTED) Report will be required of any proposals featuring 'cantilevered' building elements over drive aisles, parking areas, areas of pedestrian circulation and underground parking structures.

Use human-scaled lighting and landscaping to maximize safety and comfort. Limit the height of trees and shrubs where they may impact pedestrian or motorist sight lines.

Universal Design

Design not only to existing barrier-free requirements, but consider ways to provide increased visitability to all residential units.

DYK? Owners and occupants are not the only users of low-rise residential buildings, and friends, relatives and other visitors should have their needs considered and not be unnecessarily frustrated by non-equitable design.

DYK? Low-rise multi-residential buildings are among the most common housing types for young families and seniors, and are also among the most frequently visited by friends and relatives who are, themselves, young families and seniors.

Arts & Culture

Areas with low-rise multi-residential buildings do not often incorporate arts and culture initiatives. Consider ways to incorporate public art into low-rise multi-residential buildings, and to empower other arts and culture programs and initiatives.

DESIGN FOR SUSTAINABILITY

Design For Climate Change

Use Low Impact Development (LID) standards where possible to manage snowmelt and rainwater on site through evaporation, infiltration and water re-use.

Employ sustainable building features such as green roofs, extended eaves and photovoltaics. Roof structures should be designed to support these applications.

Provide a 6m² area on-site for a common garden and composting area, where possible.

Use locally sourced and manufactured materials where possible.

DESIGN FOR OUTDOOR COMFORT

Microclimates

Low rise buildings can still have shadow, wind and other microclimatic impacts on their surroundings. Consider these impacts and design to mitigate where possible.

SHARED SPACES

Outdoor Amenity

Shared outdoor amenity space is to be provided at-grade, and in large, continuous areas where possible, to provide the most flexibility for the usage and programming of the space.

Provide a flexible mix of seating options, access to sunlit and shaded areas, and user amenities such as barbecue facilities, dining areas, moveable furniture and options for recreation or leisure activities.

Where indoor amenity space is provided, make it directly accessible to outdoor shared spaces wherever possible, to maximize programming opportunities.

DYK? Generous, well-designed shared spaces enhance visitability by providing areas, both indoor and outdoor, for families and friends to gather. High-quality shared spaces are particularly important for buildings with small units, allowing for better and larger social gatherings.

DYK? Providing adjacent indoor and outdoor shared spaces creates more opportunities to enjoy both spaces. Indoor kitchen facilities complement outdoor BBQ areas, refuge is created for sudden changes in weather, and individual comfort preferences can be accommodated with minimal effort.

All projects are expected to meet the objectives of the City-Wide Design section of this manual.
Pedestrians & Cyclists

Provide pedestrian paths between buildings or townhouse blocks that are a minimum 3m wide and are not intruded upon by building services, utility meters or HVAC equipment.

Mid-block pedestrian connections should be provided every 60 to 80m to ensure site permeability.

Connect pedestrian mid-block connections to sidewalks, adjacent sites and destinations such as transit, parks, open space, retail, schools community facilities and natural areas.

Site buildings to frame and enclose pedestrian pathways and position windows and openings to provide natural surveillance onto the walkway.

Design pedestrian mid-block connections such that they best represent potential desire lines through the site to discourage the creation of improvised pathways through landscaped areas or across potentially dangerous vehicular areas.

Landscaping

Respect and enhance the existing landscape design of streets and neighbouring properties.

Preserve and integrate existing trees, vegetation and natural landscape features into the landscape design of new development.

Minimize impervious surfaces by reducing driveway and surface parking areas and providing permeable or semi-permeable surface materials as alternatives to concrete or asphalt.

Preserve natural drainage flow and incorporate vegetated swales where appropriate.

Employ native, non-invasive vegetation and drought-tolerant species.

Consider green roofs on buildings or structured parking.

Provide soft landscape distributed throughout the site, including tree cover over parking areas, sidewalks, laneways, driveways and other hard surfaces.

Public Art

Incorporate public art where possible, particularly for larger sites such as apartment buildings or hybrid buildings. Integrate into the building and landscape design.

Signs

All signage, including address signage, should be integrated into the design of the building, avoiding visual clutter and making buildings easy to identify without being too large or overwhelming.
SITE FUNCTION

Vehicular Access & Parking

Locate parking at the rear of buildings or underground, where possible. Where parking is provided in front of a building, limit driveway widths and use shared driveways to minimize the frequency of curb cuts, increasing space for on-street parking and reducing pedestrian/vehicle conflicts.

Separate pedestrian, cyclist and motorist circulation where possible to maximize safety and comfort. Where routes are shared between modes, include alternate materials and colours for pedestrian crossings and sharrow markings for cyclists using drive aisles to navigate a site.

Minimize the visual impact of front garages by limiting their width to less than 50% of the facade, encouraging single-car garages in tandem parking with front yard landscaping.

Limit driveway widths to provide greater area for landscaping, particularly to incorporate stormwater management and opportunities for low-impact development.

For townhouse units less than 6 metres wide, avoid individual front garages.

Avoid the creation of basement garages that require sloped front driveways.

Use landscaping, building placement, low screening walls and other site features to conceal views of parking areas from the street and neighbouring properties.

Locate parking areas and their access points away from street corners.

Garages should not project ahead of the front facade of the building.

Provide convenient and accessible bicycle parking. For apartments, provide secure, indoor bicycle parking. Ensure that sites and neighbourhoods are designed to accommodate cyclists.

Servicing & Utilities

Integrate all private servicing, meters, HVAC equipment and utility elements into the design and minimize their visual impact, particularly from the public realm and on-site shared spaces.

Waste & Recycling

Provide adequate space for waste vehicles and containers. Locations of waste containers should not block fire routes, parking or sidewalks and should be adequately separated from shared spaces such that their functionality does not impact shared spaces users or activities.

Waste and recycling storage areas are to be fully enclosed and screened from public view, first through their location, placement and orientation, then through passive screening elements such as landscaping, and finally through enhanced enclosures where no other option exists.