EVALUATION OF SANITARY SERVICING ALTERNATIVES

TABLE 1

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Gravity Sewer Alternatives</th>
<th>Pumping Station and Forceemain Alternatives</th>
</tr>
</thead>
</table>
| **Serviceable Area** | - Limited theoretical flow capacity in the existing Middle Strasburg trunk sanitary sewer (575mm diameter)
- Requires up sizing of existing sewer to accommodate all tributary areas
- Impacts existing Huron Road Right-of-Way (roadside closures)
- Adequate theoretical capacity provided
- Addresses servicing needs with the study area boundary, however, does not provide for future growth, unless additional pumping facilities are provided in the upstream drainage area | - Adequate theoretical capacity provided
- Services land well beyond the study area (areas that would normally require pumping stations would be serviced by this gravity sewer). Provides options for future growth.
- Adequate theoretical capacity provided
- Would service lands within the study boundary, however, would be an inefficient use of infrastructure, as future pumping stations would drain to this facility. |
| **Social Environment** | - Required sewer upgrades on the existing Middle Strasburg Trunk Sanitary Sewer would impact environmentally sensitive lands
- Significant disruption to existing municipal storm water management facility
- Potential municipal service interruptions due to sewer upgrades
- Impacts existing Huron Road Right-of-Way (roadside closures)
- Limited right-of-way width for conventional deep trunk sewer
- Negligible social impacts (sewer would be located within future public rights-of-way) | - Construction disturbance to existing residential community
- Potential for groundwater contamination
- Potential noise/odour concerns
- Ineffective use of existing infrastructure |
| **Natural Environment** | - Potential construction impacts (sediment/dewatering) due to proximity to Middle Branch of Strasburg Creek, mitigation required during construction
- Sediment disturbance during excavation/dewatering of PSW and existing SWMF; mitigation and restoration required
- No environmental impact (sewer location is planned to follow future road alignments)
- Minor encroachment in floodplain parallel to north side of South Branch of Strasburg Creek; mitigation and site restoration required | - Negligible environmental impacts (pumping station and forceemain would be located away from any identified features) |
| **Financial Requirements** | - Partial open trench excavation would be required, due to concrete encasement of existing sewers through the existing municipal SWM facility
- Significant tunneling/trenchless methods would be necessary to limit environmental impact
- Estimated preliminary construction cost $2,400,000
- Serviceable area (gravity sewer) limited
- Pipe material thicker and heavier due to depth (>12.0m)
- Additional ‘local’ collector sewers required
- Estimated preliminary construction cost $1,800,000
- Serviceable area accommodates proposed development areas, however, cost to construct may exceed available DC funds for construction | - Standard construction practices should be applicable (sewer depths ranging from 6.0-10.0m)
- Estimated preliminary construction cost $1,500,000
- Requires land dedication/access to municipal ROW
- Duplication of infrastructure costs (ineffective use of existing infrastructure)
- Requires additional forceemain and local sewer to convey drainage
- Significantly more expensive than gravity sewer alternatives (operating/maintenance cost) |
| **Preliminary Conclusion** | - Represents a possible solution, however, requires significant capital to construct, with significant risk to the environment. Least preferred option based on preliminary analysis
- Represents a possible solution, however, requires significant capital to construct, due to depth of sewer required in proposed roadways | - Represents a viable and supportable solution, and poses the least environmental impact.
- Not viable. Natural topographic relief throughout the subject area is conducive to a ‘gravity drainage’ solution, and as such, this option would lead to unacceptable long-term operational costs to the municipality. |

Kitchener Development & Technical Services